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Abstract. We calculate the next-to-leading corrections to the jet vertex which is relevant for the Mueller-
Navelet-jets production in pp̄ collisions and for the forward jet cross section in ep collisions. In this first part
we present the results of the vertex for an incoming quark. Particular emphasis is given to the separation
of the collinear divergent part and the central region of the produced gluon.

1 Introduction

The BFKL Pomeron [1] presents the perturbative QCD
prediction for the Pomeron, and in recent years attempts
have been made to verify its relevance for experimental
data. Apart from the γ∗γ∗ total cross section in e+e− scat-
tering which is generally considered to be the gold-plated
BFKL measurement [2], special jet measurements have
been proposed both for hadron-hadron colliders (Mueller-
Navelet jets [3]) and for deep inelastic scattering (forward
jets [4]). First comparisons of the leading order calcula-
tions [5,6] with experimental data have clearly demon-
strated the need of next-to-leading order calculations:
both in the e+e− measurements at LEP and in DIS at
HERA the data are below the leading log s (LL) curves,
while data from the pp̄ collider at TEVATRON are found
above the LL estimates. The next-to-leading (NLL) cor-
rections to the BFKL kernel [7,8] lower the theoretical
prediction, but they are so large that they might even
cause serious problems for the stability of the series. Var-
ious attempts [9,10] have been made in order to improve
the predictivity of the NLL BFKL approach. However, so
far one has not been able to perform a consistent NLL
analysis of the data. First of all, a consistent NLL frame-
work for describing not fully inclusive processes, such as
jet observables, has not been established yet. In addition,
even adopting the LL high energy factorization formulae
at NLL level, a few important pieces of the NLL calcula-
tions are still missing.

The three measurements for searching high energy
QCD dynamics are illustrated in Fig. 1: for a complete
NLL analysis one needs, in addition to the NLL calcula-
tion of the BFKL kernel, the photon impact factor and
the jet production vertex. Whereas the former one is cur-
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rently being investigated by two groups [11,12], the latter
one, so far, has not been calculated. It is the purpose of
this paper to present a consistent factorization formula for
high energy jet cross sections at NLL level, and to obtain
first results for the jet vertex, namely the quark-initiated
vertex. The case of an incoming gluon will be presented
in a forthcoming paper [13].

The theoretical challenge in performing a NLL calcu-
lation of such a jet vertex is that it lies at the interface of
collinear factorization and BFKL dynamics: in Fig. 1c the
lower incoming parton emerges from the proton and pro-
duces a hard jet, thus obeying the rules of DGLAP evolu-
tion [14] and collinear factorization. Above the vertex, on
the other hand, one requires a large separation in rapidity
between the two outgoing jets (which are assumed to have
large transverse energies of comparable magnitude). The
kinematics between the jets, therefore, belongs to large-
log s dynamics and is described in terms of the BFKL
language. When computing next-to-leading (NLO) correc-
tions1 to the jet production vertex, one expects to find
collinear divergencies which have to be counted as higher
order corrections of the incoming parton density; at the
same time, part of the NLO corrections will overlap with
high energy gluon radiation between the two jets which
belongs to the leading log s (LL) BFKL approximation. It
is one of the main goals of our analysis to show that both
types of contributions can successfully be identified and
separated from the NLL jet vertex.

As the central part of our calculation we will compute,
to order α3s, the high energy limit of the cross section of
the processes q + q → q +X + jet (Fig. 2), where X may
contain one gluon or quark. The LL approximation of the
order O(α3s log s/s0) has been calculated before [15], we
will present the NLL (constant in s) term O(α3s). We will

1 Note the difference between LL (leading log s) and LO (low-
est order) and that between NLL (next-to-leading log s) and
NLO (next-to-leading order = next-to-lowest order = one-loop)
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Fig. 1a–c. Schematic diagrams rep-
resenting the three processes searching
for high energy QCD dynamics: a dou-
ble DIS or γ∗γ∗ scattering; b DIS with
forward jet; c hadron-hadron scattering
with dijets or Mueller-Navelet jets

show that the cross section can be written in a factorized
form: there are NLL corrections to the impact factor of
the upper incoming quark (which have been calculated
before [16]), and for the emission of the gluon in the central
region we recover the LL BFKL result. Finally, the NLL
corrections to the jet vertex of the lower incoming quark
are what we obtain as new result. Making use of this high
energy factorizing, we can use our results for the Mueller-
Navelet jets (Fig.1c): we can apply the NLL results not
only to the lower jet vertex but also to the upper one.
For the forward jets in DIS (Fig. 1b) we have the NLL
corrections for the jet vertex, but we have to wait for the
completion of the NLL corrections to the photon impact
factor.

An important result of the NLL calculation is the de-
pendence upon the energy scale s0: in the leading log s
approximation this scale is undetermined and thus intro-
duces a principal uncertainty of the theoretical prediction.
The NLL calculation determines how the cross section
changes with a change in s0 and removes this uncertainty.

Moreover, at next-to-leading order, the renormalized
parton densities start to play a role, reducing drastically
the dependence on the collinear factorization scale µF ,
otherwise maximal in all previous LO calculations.

Our paper will be organized as follows. We begin with
a brief outline of our program. In Sects. 3 and 4 we present
the results of our calculation: first the virtual corrections,
then the real corrections. Our main emphasis will be on
the separation of soft and collinear divergencies at the
vertex of the lower incoming quark and on the removal
of the central region of the produced gluon. Combining
the real and virtual corrections we obtain in Sect. 5 an
analytic expression for the jet vertex. We conclude with a
brief summary and discussion.

2 High energy factorization

2.1 General framework

The processes that we are going to study are those in
which a hadron H strongly interacts with parton b; to
be definite, we chose b to be a quark. In the final state
a jet J (in the forward direction with respect to H) is
then identified (see Fig. 2). Our notation uses light cone
coordinates

pµ = (p+, p−,p) , p± :=
p0 ± p3√

2
, (1)
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Fig. 2. Diagrammatic representation of the high energy pro-
cess studied in this paper. H is the incoming hadron providing
parton a with distribution density f ; b is the other incoming
particle which will be taken to be a quark; J denotes the jet
produced in the forward direction (w.r.t H) and i is the generic
label for outgoing particles

where the light-like vectors pH and pb form the basis of
the longitudinal plane:

pH =
(√

s

2
, 0,0

)
, s := (pH + pb)2 (2a)

pb =
(
0,
√
s

2
,0
)

(2b)

pi = Ei

(
eyi

√
2
,
e−yi

√
2
,φi

)
. (2c)

In the last equation we have introduced a parameteriza-
tion for the i-th particle in the final state in terms of the
rapidity yi (in the pH + pb center of mass frame), of the
transverse energy Ei = |pi| and of the azimuthal unit vec-
tor φi ‖ pi.

As usual, our jet consists of a certain number of par-
tons, whose rapidities and azimuthal angles are found in-
side a given (small) region in the (y, φ) plane. The position
of the center of that region defines the rapidity yJ and the
azimuthal angle φJ of the jet, its size is related to the jet
radiusR, and the sum of the transverse energies of the par-
ticles forming the jet constitutes the jet transverse energy
EJ . We will keep our jet definition rather general; it only
has to obey a few minimal requirements (see Sect. 4.1).

We will be interested in the high energy limit of the
subprocess a + b → q + i+ jet . In addition to the energy
s, we need to define the momentum transfer

t := (pH − pJ)2 . (3)

and the jet energy EJ :
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pJ � EJ

(
eyJ

√
2
,
e−yJ

√
2
,φJ

)
=⇒ −t � √

sEJe−yJ . (4)

The high energy (Regge) limit that we are considering is
defined by

E2
J fixed , t fixed , s → ∞ (5)

which determines a logarithmic growth of the jet rapidity
with s:

yJ ∼ 1
2 log s . (6)

The use of perturbation theory is justified because we
consider all kinematic scales much greater than the QCD
scale:

E2
J ∼ −t � Λ2

QCD; . (7)

This condition allows also us to neglect the masses and
the Fermi motion of the light partons inside H. Equiva-
lently, in terms of the twist expansion, the leading twist
contribution can be extracted by considering the parton
massless and collinear to H. We shall therefore adopt

pa = x pH =
(
x

√
s

2
, 0,0

)
. (8)

It is well known that the Regge limit is dominated by
gluon t-channel exchanges [1] and that, in the leading log-
arithmic approximation, the elastic scattering amplitude
and the total cross section can be written in a factoriz-
ing form: (i) a gluon Green’s function which describes the
exchanged system, and (ii) impact factors which denote
the coupling to the scattering partons or particles. NLO
corrections that have been computed for the BFKL ker-
nel [7,8] and for a few impact factors [16–19] support this
factorizing form also in next-to-leading order. It is one of
the goals of this paper to verify this factorization also for
the inelastic process a + b → a + i + jet . Thanks to this
property we will be able to treat, on the same footing,
several classes of processes. Two of them are crucial for
the study of QCD in the Regge limit:

– dijet, or Mueller-Navelet jets, coming from hadron-
hadron collisions where a jet is detected in the for-
ward direction of each hadron; in this case particle b
is a hadron;

– forward jet, coming from lepton-hadron collisions
where a jet is detected in the forward direction with re-
spect to the hadron; in this case particle b is identified
with the virtual gauge boson, e.g. a photon, emitted
by the lepton.

In the following we assume that a proper definition of
the jet has been chosen. This choice is represented by a
function (actually a distribution) SJ which selects the final
state configurations contributing to the observable we are
interested in. The jet cross section is given by the action
of SJ on the full exclusive cross section in D = 4 + 2ε
spacetime dimensions

dσ =
1
2s

∞∑
n=2

(2π)DδD
(
pH + pb −

n∑
i=2

pi

)

k

a

b
2

1

Fig. 3. Leading diagram at lowest order for parton-parton
scattering: the interaction occurs via gluon exchange in the
t-channel

×〈|MHb→n|2〉dΦn(p1, · · · , pn) (9)

as follows:

dσ
dJ

:=
dσ

dyJdEJdφJ
=
∫

dσ SJ . (10)

Here J = (yJ , EJ , φJ) collects the jet variables, n is the
number of particles in the final state, M is the invariant
amplitude and dΦ is the phase space measure.

In order to describe perturbatively a hadron-initiated
process, we assume – according to the parton model – the
physical cross section to be given by the corresponding
partonic cross section dσ̂a (computable in perturbation
theory) convoluted with the distribution densities fa of
the partons a inside the hadron H. The partonic distri-
bution functions (PDFs) fa : a ∈ H constitute a non-
perturbative input. This approach is justified provided
the infrared singularities stemming from QCD interaction
among massless objects can be consistently absorbed in
a redefinition of the PDFs according to the well known
factorization of mass singularities [20]. Those “renormal-
ized PDFs” will be eventually interpreted as the universal
objects measured in hadronic collisions and obeying the
DGLAP equations. Let us therefore write

dσ =
∑
a∈H

∫ 1

0
dx dσ̂ba(x) f (0)a (x) (11)

where x = p+a /p
+
H is the longitudinal momentum fraction

of the parton a with respect to the parent hadron H. In
(11) we show explicitly that, according to the previous
discussion, the PDFs must still be considered as “bare”
quantities. In conclusion, the jet cross section is given by

dσ
dJ

=
∑

a

∫
dx dσ̂ba(x)SJ(x)f (0)a (x) (12)

and is diagrammatically represented in Fig. 2.
We proceed by reviewing parton-hadron scattering at

lowest order.

2.2 The Jet vertex at lowest order

In order to evaluate the jet cross section in the high energy
regime (5) for parton-hadron scattering, thanks to (12), we
need only to consider parton-parton scattering. At lowest
order (LO), the relevant cross section is dominated by one
gluon exchange in the t-channel, as shown in Fig. 3. Let
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us define the gluon momentum and the partonic center of
mass energy squared

k := p1 − pa = −zpa + wpb + k⊥ , k⊥ = (0, 0,k) , (13)

ŝ := (pa + pb)2 = xs .

The partonic cross section is constant in ŝ and is given by

dσ̂(0)ba = h
(0)
b (k)h(0)a (k)dk , dk ≡ d2+2εk , (14)

in terms of the LO partonic impact factors [17]

h
(0)
i (k) := N Ci

k2 ,

N =
21+εαs

µ2εΓ (1− ε)
√
N2
c − 1

, (i = a, b) , (15)

where the colour factor Ci is CF = (N2
c − 1)/2Nc for a

quark (i = q) and CA = Nc for a gluon (i = g); the
coupling αs in D = 4 + 2ε dimensions is defined in (37).

It is evident that the jet can contain only one of the
two particles in the final state, the other moving in the
opposite direction. Furthermore, since we are looking for
the jet in the forward direction with respect to H, the
configuration p2 = pJ gives a negligible contribution to the
cross section. This can be easily seen by noticing that the
corresponding amplitude involves a propagator ∼ 1/|u| �
1/s much smaller than that of the p1 = pJ amplitude ∼
1/t. This means that, at lowest order, the jet momentum
has to be identified with p1, so that the jet distribution
for two-particle final states, according to (10), reads

S
(2)
J (p1, p2; pa, pb) = δ(y1 − yJ)δ(E1 − EJ)δ(φ1 − φJ) .

(16)
As independent variables in S(2)J we can adopt p1 = k for
the final state, and p+a /p

+
H = x for the initial state, so that

we can define

S(2)
J (k;x) := S

(2)
J (p1, p2; pa, pb)

= δ
(
1− xJ

x

)
E1+2ε
J δ(k − kJ) ,

xJ :=
EJeyJ

√
s

, (17)

being kJ the transverse momentum of the jet. By sub-
stituting (14) and (17) in (12), the LO jet cross section
assumes the factorized form

dσ
dJ

(0)
=
∑

a

∫
dx
∫

dk h
(0)
b (k)h(0)a (k)S(2)

J (k;x)f (0)a (x) .

(18)
Besides the PDF fa and the partonic impact factor hb, we
are left with a term that can be interpreted as the LO jet
vertex

V (0)
a (k, x) := h(0)a (k)S(2)

J (k;x) . (19)

The lowest order formula for the jet cross section is there-
fore

dσ
dJ

(0)
=
∑

a

∫
dx
∫

dk h
(0)
b (k)V (0)

a (k, x)f (0)a (x) . (20)
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Fig. 4. Labelling the two-to-three parton scattering process.
Note the definition of the transferred momenta k and k′

+ + ++

Fig. 5. Feynman diagrams contributing to the qq → qqg pro-
cess at leading log s order

2.3 One-loop analysis:
LL approximation and future strategy

Moving on to higher order, let us first address the lead-
ing logarithmic approximation, i.e., terms of the order
αns log

n(s/− t). The resummation of these terms, also re-
ferred to as leading logarithmic (LL) approximation, was
addressed long ago for fully inclusive processes [1], and
it has also been applied to dijets [5] and forward jets [6].
It is instructive to review briefly how the logarithmic en-
hanced terms arise at one-loop, and to study the structure
of the singularities and their connection with the various
kinematic regions.

We consider first the real corrections to, say, quark-
quark scattering, which involves the emission of an ad-
ditional gluon of momentum p3 as shown in Fig. 4. The
structure of the final states giving the leading contribu-
tions corresponds to the so called multi-Regge kinematics
(MRK)

y1 � y3 � y2 , E1 ∼ E3 ∼ E2 , (21)

where the rapidity y3 of the emitted gluon is strongly or-
dered between the rapidities of the scattered partons y1
and y2 (i.e., the gluon is emitted in the central region),
while the magnitudes of the transverse momenta are of
the same order.

All diagrams shown in Fig. 5 contribute at LL, and the
resulting differential partonic cross section reads

dσ̂(1,real)ba � αsh
(0)
b (k)h(0)a (k′)

CA
π

1
πε(k − k′)2

dk dk′ dz
z
,

(22)
where πε is given in (54). We have introduced the mo-
menta transferred by the a and b partons

k := pb − p2 = −w̄pa + wpb + k⊥ ,
k⊥ = (0, 0,k) (23a)
k′ := p1 − pa = −zpa + z̄pb + k′

⊥ ,
k′

⊥ = (0, 0,k′) . (23b)

The transverse energies introduced in (2c) correspond to
E1 = |k′|, E2 = |k|, E3 = |k − k′|. In the MRK (21),
w̄ ∼ z̄ � w ∼ z � 1, so that the outgoing parton 1
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++ + + .  .  . 

(a) (b) (c) (d)

Fig. 6a–d. Feynman diagrams contributing to the one-loop
virtual corrections to qq → qq elastic scattering in LL approx-
imation a,b and in NLL approximation c,d,...

carries most of the plus-component of the parent parton
a. By using (2c) and comparing with (8) we get

y1 � log
x
√
s

E1
. (24)

Since E1 = |k′|, k′ characterizes completely the momen-
tum p1. The range of the momentum fraction z is approx-
imately given by p2

3/ŝ < z < 1 − k′2/ŝ. The boundary
values of z correspond to the gluon in the fragmentation
region of parton b and a respectively, where (22) no longer
holds. Nevertheless, it shows that, upon z-integration, a
logarithmic factor log(ŝ/s0) appears:

dσ̂(1,real)ba =
∫

dz
dσ̂
dz

(1,real)
ba

= αsh
(0)
b (k)h(0)a (k′) (25)

×
[
K(0,real)(k,k′) log

ŝ

s0
+ const

]
dk dk′

K(0,real)(k,k′) :=
CA
π

1
πε(k − k′)2

. (26)

The coefficient of the log s term K(0,real) is the real part of
the leading log BFKL kernel. The scale of the energy s0 is a
parameter of the order of the transverse momenta squared
of the gluons (s0 ∼ p2

3 = |k−k′|2 ∼ k2 ∼ k′2). Its value is
not determined in the LL approximation – a change of s0
would affect only the constant piece in (25) –, but will play
a central role when going to the next-to-leading level of
accuracy. In particular, that part of the differential cross
section in which the emitted gluon lies outside the central
region contributes to the constant term (i.e., without a
log s enhancement).

Let us now consider the virtual corrections. In covari-
ant gauges, the diagrams involving two gluon exchanges
(see Figs. 6a,b) give contributions to the amplitude which
increase logarithmically with the energy, whereas other di-
agrams (shown in Figs. 6c,d) have no logarithmic enhance-
ment. Note, however, that the latter diagrams contain the
ultra-violet (UV) singularities that provide the renormal-
ization of the coupling.

The result of the virtual correction to the partonic
cross section can be presented as follows:

dσ̂(1,virt)ba = αsh
(0)
b (k)h(0)a (k)

[
2ω(1)(k) log

ŝ

k2 + const
]
dk.

(27)
The coefficient ω(1) in front of the log s is the one-loop
Regge-gluon trajectory, because – according to Regge the-

ory – the amplitude for ab → ab elastic scattering medi-
ated by color octet exchange is described by the exchange
of a reggeized gluon and takes the form:

Mba ∼
(
s

−t
)ω(t)

= 1 + αsω(1)(t) log
s

−t + · · · . (28)

By taking the square modulus and adjusting the normal-
ization through the LO expression (14), it is straightfor-
ward to match (27). This contribution to the cross section
defines the virtual part of the LL BFKL kernel:

K(0,virt)(k,k′) := 2ω(1)(k)δ(k − k′) . (29)

Together with (22) and (27) we obtain the full one-loop
partonic cross section

dσ̂(1)ba = αsh
(0)
b (k)h(0)a (k′)

×
[
K(0)(k,k′) log

ŝ

s0
+ const

]
dk dk′ . (30)

Here K(0) collects the real and virtual coefficients of the
logarithmic terms:

K(0)(k,k′) := K(0,real)(k,k′) +K(0,virt)(k,k′) . (31)

and defines the LL BFKL kernel; the term const contains
contributions that have no large energy logarithm.

Let us use these results to define the jet cross section.
The jet we want to observe includes the outgoing particles
carrying the largest values of rapidity lying within a spec-
ified (small) range R. However, the strong rapidity order
in (21) allows only p1 to enter the jet, so that the jet dis-
tribution for three particles in the final state S(3)J reduces
to the lowest order one S(2)J (16) which, combined with
the impact factor h(0)a in (30), reproduces the lowest order
jet vertex V (0)

a (19). Convoluting with the PDF we obtain
the following factorized expression for the one-loop LL jet
cross section (ŝ = xs):

dσ
dJ

(1,LL)
= αs

∑
a

∫
dx
∫

dk dk′ h(0)b (k)K(0)(k,k′)

× log
xs

s0
V (0)

a (k′, x)f (0)a (x) . (32)

It is the purpose of this paper to compute, in this order
of αs, the constant (i.e., non-logarithmic) corrections to
our jet cross section formula. We generalize the results
(20) and (32) and make the following ansatz:

dσ
dJ

= αs
∑

a

∫
dx
∫

dk dk′ hb(k)

×G(xs,k,k′)Va(k′, x)fa(x) , (33a)

G(xs,k,k′) := δ(k − k′) + αsK(0)(k,k′) log
xs

s0
, (33b)

According to the previous remarks, we suppose that the
inclusion of the one-loop constant terms just provides per-
turbative corrections to the quark impact factor, to the jet
vertex, and to the PDF as follows:

h = h(0) + αsh(1) (34a)
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V = V (0) + αsV (1) (34b)

f = f (0) + αsf (1) . (34c)

Equivalently, our ansatz corresponds to the following
structure for the one-loop cross section:

dσ
dJ

(1)
= αs

∑
a

∫
dx
∫

dk

{∫
dk′
[
h
(0)
b (k)K(0)(k,k′)

× log
xs

s0
V (0)

a (k′, x)f (0)a (x)
]

+h(1)b (k)V (0)
a (k, x)f (0)a (x)

+h(0)b (k)V (0)
a (k, x)f (1)a (x)

+h(0)b (k)V (1)
a (k, x)f (0)a (x)

}
, (35)

which is obtained simply by expanding (33a) up to relative
order αs.

In (35) the Born approximations (marked by the su-
perscript (0)) have been listed in (15), (31), and (19) re-
spectively. For the first order correction to the partonic
impact factor, h(1), which appears on the second line, we
can use the known expression of [16,17], and for the cor-
rection to the PDF, f (1), we have the usual convolution
with the LO Altarelli-Parisi splitting functions:

αsf
(1)
a (x, µ2F ) :=

αs
2π

1
ε

(
µ2F
µ2

)ε∑
c

∫ 1

x

dξ
ξ
Pac(ξ)f (0)c

(
x

ξ

)

=
αs
2π

1
ε

(
µ2F
µ2

)ε∑
c

Pac ⊗ f (0)c . (36)

Because of the definition (37) for αs = g2µ2ε/4π [1+ε(γE−
log 4π)], (36) defines the one-loop PDF in the MS scheme.
Finally, the correction term V

(1)
a is what we want to com-

pute in this paper.
Equations (33) and (34) constitute a highly non trivial

ansatz, which will be shown to depend upon a careful sep-
aration of singular and finite pieces. Our main task will
consist to identify the collinear singularities (36) which
go into the renormalization of the parton densities, to
check that the other infrared singularities cancel out when
adding virtual and real corrections, and, finally, to sepa-
rate the terms proportional to log s which belong into the
first line of (35). At the end, a finite term remains, which
eventually can be interpreted as one-loop correction to the
jet vertex, V (1)

a .
In the rest of this paper we will compute this jet vertex

correction, V (1)
a . In this paper we will concentrate on the

case of incoming quark (a = q). The case of an incoming
gluon (a = g) will be dealt with in a subsequent paper
[13].

3 Virtual corrections

In the following we will develop the one-loop analysis of
the quark-initiated jet production process. We adopt di-
mensional regularization in D = 4 + 2ε dimensions and

define, according to the MS scheme, the dimensionless cou-
pling αs as a function of the dimensionful bare coupling g
and of the renormalization scale µ as follows:

αs = α(0)s :=
g2µ2εΓ (1− ε)

(4π)1+ε
(37)

We begin by collecting the virtual corrections. Some of
the diagrams are shown in Fig. 6. Discarding all terms sup-
pressed by powers of s, the one-loop parton-parton cross
section can be derived from [21] and reads

dσ̂ba = αs h
(0)
b (k)h(0)a (k)

×
[
2ω(1)(k) log

xs

k2 +Πb(k) +Πa(k)
]
dk . (38)

The first term has already been introduced in Sect. 2.3: it
represents the LL contribution to the virtual corrections.
In particular the coefficient of log s, namely 2ω(1), consti-
tutes the virtual part of the leading kernel K(0) of (31)
and is just twice the one-loop Regge-gluon trajectory

ω(1)(k) = −CA
π

1
2ε
Γ 2(1 + ε)
Γ (1 + 2ε)

(
k2

µ2

)ε
. (39)

It shows an ε-pole due to a soft singularity which compen-
sates the corresponding one of the real part of the kernel.

The non logarithmic terms in (38) represent the NLL
contribution to the virtual corrections and are expressed
in terms of the virtual corrections to the impact factor Π.
The virtual corrections to the quark impact factor read:

Πq(k) =
[
−11Nc − 2Nf

12π
1
ε
+
(
85
36

+
π2

4

)
CA
π

− 5
18
Nf
π

−
(
1
ε2

− 3
2ε

+ 4− π2

6

)
CF
π

](
k2

µ2

)ε
. (40)

In the above expression we have singled out terms of dif-
ferent physical origin. The first term is proportional to the
β-function coefficient b0 = (11Nc−2Nf )/12π. It multiplies
the ultraviolet (UV) pole providing the MS renormaliza-
tion of the coupling

αs(k2) := α(0)s

[
1− α(0)s

b0
ε

(
k2

µ2

)ε]
. (41)

In fact, at LO the partonic cross section (14) is simply the
product of two bare partonic impact factors

dσ̂
dk

(0)
bq = h

(0)
b (α(0)s )h(0)q (α(0)s ) , (42)

where we have explicitly shown only the dependence on
α
(0)
s . Adding the UV divergent term of (38) stemming from
Πq renormalizes the coupling inside hq:

dσ̂
dk

(0)
bq +

dσ̂
dk

(1,UV)
bq

∣∣∣
Πq

= h
(0)
b (α(0)s )h(0)q (α(0)s )

[
1− α(0)s

b0
ε

]
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= h
(0)
b (α(0)s )h(0)q (αs(µ2)) . (43)

The same UV pole can be found in Πb, and it provides
the running of the coupling of h(0)b .

The virtual contribution to the jet cross section is eas-
ily obtained by substituting in (12) the expression (17)
for the jet distribution and (38) for the partonic cross sec-
tion. By combining the jet distribution with the quark q
impact factor at LO we reproduce the LO jet vertex (19)
and, after renormalization, we end up with

dσ
dJ

(virt)
= αs

∫
dx
∫

dk h
(0)
b (k)

×
[
2ω(1)(k) log

xs

k2 + Π̃b(k) + Π̃q(k)
]

×V (0)
q (k, x)f (0)q (x) , (44)

where

Π̃q(k) := Πq(k)− (−b0/ε)

=
[(

85
36

+
π2

4

)
CA
π

− 5
18
Nf
π

(45)

−
(
1
ε2

− 3
2ε

+ 4− π2

6

)
CF
π

− b0 log
k2

µ2

](
k2

µ2

)ε
.

Any occurrence of αs in (44) and in all other coming for-
mulae is to be understood as αs(µ2).

The “reduced” quark impact factor virtual correction
(45) shows double and single poles in ε. These poles are
of IR origin and are due to both soft and collinear sin-
gularities. Partly they will cancel against the correspond-
ing singularities of the real emission corrections, leaving
a simple pole that will be absorbed in the redefinition of
the PDFs. This will be shown in Sect. 5.

4 Real corrections

When calculating the real emission corrections to the one-
loop jet cross section, our main concern will be the correct
treatment of the IR singularities (keeping in mind that we
are considering a partially exclusive process). Infrared sin-
gularities are contained in the upper quark impact factor,
the real part of the BFKL kernel, and in the lower jet
vertex. Some of the latter ones contribute to the renor-
malization of the incoming parton density. A priori it is
not evident that the overlap of the various regions of the
phase space responsible for the divergencies can be disen-
tangled in such a way that they reproduce all the expected
singularities (and not more). We will show that this is ac-
tually the case.

4.1 Jet definition

We begin with a brief review of the jet definition. We
follow the arguments given in [22], and we wish to keep
our distribution functions S(n)J as general as possible. In

massless QCD two kinds of IR singularities exist: (i) soft
singularities which arise when a gluon is emitted with van-
ishing momentum; (ii) collinear singularities which arise
when two interacting partons are emitted collinearly. In
order to define infrared finite jet cross sections we have
to require finite limits whenever momenta in the final
state belong to either (i) or (ii). Given a set of func-
tions S(n)J (p1, · · · , pn; pa, pb) (where (pa, pb) denote the
momenta of the initial state), we have to require that a
state (p1, · · · , pj , · · · , pn) with a soft particle pj → 0 be in-
distinguishable from the n− 1-particle state (p1, · · · , pn):

lim
pj→0

S
(n)
J (· · · , pj , · · · ; pa, pb) = S

(n−1)
J (· · · ; pa, pb)

(46a)
with pj being dropped in the RHS. In the same way, the n-
particle state (p1, · · · , pi, pi+1, · · · , pn) with two collinear
particles, e.g. pi ‖ pi+1, cannot be distinguished from the
n − 1-particle final state (p1, · · · , pi + pi+1, · · · , pn). The
jet function must then fulfill

S
(n)
J (· · · , ap, bp, · · · ; pa, pb) (46b)

= S
(n−1)
J (· · · , (a+ b)p, · · · ; pa, pb) , (a, b > 0) .

When an outgoing particle is collinear to an incoming one,
say a, a similar relation (which can be inferred from (46b)
by invoking crossing symmetry) holds:

S
(n)
J (· · · , apa, · · · ; pa, pb) (46c)

= S
(n−1)
J (· · · ; (1− a)pa, pb) , (0 < a < 1) .

The last equation expresses the property of factorizability
of initial state collinear singularities. Equations (46b) and
(46c) should be understood as smooth limits for momenta
approaching the collinear configuration.

In our case real emission involves three partons in the
final states, one gluon in addition to the incoming quarks
a and b: abg. As indicated in Fig. 4, we label the outgoing
partons in our process ab → 123 by 1 = (quark a), 2 =
(quark b), and 3 = (gluon g). Let us start by listing the
possible IR singular configurations. Only the emission of
gluon 3 with vanishing momentum gives rise to soft singu-
larities. Collinear singularities arise in collinear emissions
of partons that couple directly to each other, i.e., have a
common vertex. This is the case for pairs of gluons, for
quarks and gluons, and for identical incoming and out-
going quarks (or quarks and antiquarks). Therefore, the
list of all possible collinear singular configurations, in an
obvious notation, reads as follows:

a ‖ 1 , a ‖ 3 , 1 ‖ 3 , (47a)
b ‖ 2 , b ‖ 3 , 2 ‖ 3 . (47b)

It is important to note that, in the kinematic regime we
are considering, configurations in which quark 2 is emitted
outside the fragmentation region of quark b are strongly
suppressed, i.e., quark 2 never belongs to the jet produced
in the forward direction of quark a. To see this we note
that as long as quark b is deflected at small angles by gluon
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exchange, the amplitude contains a 1/t factor coming from
the gluon propagator. Suppose, on the other hand, quark
b deflected with an angle large enough to enter the central
region or even the fragmentation region of quark a (which
includes the jet region). If the scattering happens by gluon
exchange, the propagator of the latter is of order 1/|u| �
1/s, providing a suppression factor ∼ t/s compared to
the small angle case. There is also the possibility of quark
exchange that involves a 1/t propagator, but in this case
the spin of the quark introduces a new suppression factor
∼ √−t/s compared to the gluon exchange. Therefore,
we can safely neglect the configurations in which quark 2
enters the jet, and only particles 1 and 3 play a role in
building up the jet.

To become more specific, we change the argument
structure of the jet distribution functions S(n=3)

J and in-
troduce, as independent variables, p1,p3, p

+
3 , p

+
a :

S(3)
J

(
p1,p3,

p+3
p+H

;
p+a
p+H

) ≡ S(3)
J (k′,k − k′, xz;x)

:= S
(3)
J (p1, p2, p3; pa, pb) . (48)

The soft IR constraint (46a) of S(3)J applies only to soft
gluon emission and, since quark 2 does not participate in
the jet, the collinear conditions (46b,c) apply only to the
configurations listed in (47a). The corresponding relations
for S(3)

J read:

3 soft : S(3)
J (p,0, 0;x) = S(2)

J (p;x) (49a)

1 ‖ 3 : S(3)
J (ap, bp, ξ;x) = S(2)

J ((a+ b)p;x) (49b)

a ‖ 1 : S(3)
J (0,p, ξ;x) = S(2)

J (p; ξ) (49c)

a ‖ 3 : S(3)
J (p,0, ξ;x) = S(2)

J (p;x− ξ) . (49d)

In the following sections these relations will be used when
extracting the divergencies of the real emission. It is cru-
cial that the singular contributions generated by the real
corrections are proportional to the LO cross section: only
in this case cancellations with the virtual singularities can
occur, and the factorization of the collinear singularities
into the PDFs can be performed consistently. Therefore,
the reduction S(3)

J → S(2)
J in the IR singular configura-

tions contained in (49) is a necessary prerequisite.

4.2 Phase space splitting and the master formula

Before embarking in the analysis of the one-loop real cor-
rections, let us divide the phase space of the outgoing
gluon and present the ‘master formula’ that we are go-
ing to make use of. We have already pointed out that
the log s term arises from the configurations with gluon
3 emitted in the central region, while the gluon in the
fragmentation region of b should mainly contribute to the
impact factor correction h(1)b whereas the gluon in the frag-
mentation region of q should provide the jet vertex V (1)

q

and the PDF corrections f (1)q . It is easy to define a rapid-
ity cut that separates the two fragmentation regions: we

perform a boost into the positive z-direction which takes
us into the partonic center of mass system (PCMF). It
shifts rapidities while transverse energies and azimuthal
angles are preserved. Consequently, a four momentum pµ

is transformed into p′µ with

p′µ = (p′+, p′−,p′) = (e∆yp+, e−∆yp−,p) ,

∆y =
1
2
log

1
x
, (50)

and rapidity is shifted according to y′ = y + ∆y. In the
PCMF, we define the cut as the rapidity center y′

cut = 0
which corresponds to ycut = − 1

2 log
1
x . In the Sudakov

parameterization (23), the form of the cut is very simple:

y3 = y′
cut = 0 ⇐⇒ wcut = zcut =

E3√
xs

. (51)

Correspondingly, our rapidity phase space is divided into
the “upper half region” (negative rapidity: y′

3 < 0 or w >
E3√
xs
) which contains the fragmentation region of quark b

and half of the central region, and the “lower half region”
(positive rapidity: y′

3 > 0 or z > E3√
xs
) which contains the

other half of the central region and the fragmentation of
parton q and contributes to the jet vertex.

Finally, we need the partonic differential cross section
for the bq → 123 process. They have been computed in
[16,17]. In the high energy regime, where we neglect terms
suppressed by powers of s, the form of the partonic dif-
ferential cross section turns out to be quite simple when
restricted to one of the two halves of the phase space,
y′
3 < 0 or y′

3 > 0. For the “lower half region” y′
3 > 0 the

cross section can be cast into the general form

dσ̂ba→fin = h
(0)
b (k)Ffin(k,k′, z)h(0)a (k′) dk dk′ dz ,

(z > zcut) , (52)

where the function F depends on the particular final state.
In particular, for quark-quark scattering, we have

Fqqg(k,k′, z) =
αs
2π

Pgq(z, ε)
πε

1
q2(q − zk)2

(53)

× [CF z2k′2 + CA (1− z) q · (q − zk)
]
,

Pgq(z, ε) =
1 + (1− z)2 + εz2

z
,

πε = π1+εΓ (1− ε)µ2ε , (54)

where q = k − k′ is the gluon transverse momentum and
Pgq(z, ε) is – apart from a missing CF factor – the real
part of the q → g splitting function in 4 + 2ε dimensions.
In the “upper half region” y′

3 < 0, the same relation (52)
holds with the replacements

k → −k′ , k′ → −k , q → q , z → w , (55)

except for the impact factor which retain their form. These
‘master formulae’ (53)–(55) will be used in the following
in order to find the real corrections to the quark-initiated
jet vertex.
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Fig. 7. Structure of the Feynman diagrams contributing to
the qb → qbg process in NLL approximation when the outgo-
ing gluon is emitted with negative rapidity y′

3 < 0. The blob
represents all possible bg∗ → bg QCD sub-diagrams

4.3 Real corrections to the upper quark impact factor

We begin by computing the contribution to the jet cross
section given by the “upper half region” y′

3 < 0 which
gives rise to the NLO impact factor of the upper quark.
The starting formula is derived from (12), using (48) for
the jet distribution (with z = E2

3/wxs to good accuracy)
and (52) and (53) (with the replacements (55)) for the
partonic cross section:

dσ
dJ

(y′
3<0)

=
αs
2π

∫
dk dk′ h(0)b (k)h(0)q (k′)

×
∫ 1

wcut

dw
Pgq(w, ε)

πε

1
q2(q + wk′)2

× [CFw2k2 + CA(1− w)q · (q + wk′)
]

×
∫ 1

0
dx S(3)

J

(
k′, q,

E2
3

wxs
x;x

)
f (0)q (x) . (56)

Since y3 < y′
3 < 0, the gluon is emitted very far from the

jet region y � yJ ± R, for which yJ ∼ log
√
s � R ∼ 1

(cf. (6)). Therefore, only quark 1 can enter the jet, so that
in this half of the phase space

S(3)
J

(
k′, q,

E2
3

wxs
x;x

)
= S(3)

J

(
k′, q,

E2
3

ws
;x
)

(57)

= S(2)
J (k′;x) , (w > wcut) .

It is now possible to factor out from the w and k inte-
grals the q impact factor and the jet distribution, which,
according to (19), reproduce the LO jet vertex. We obtain:

dσ
dJ

(y′
3<0)

= αs

∫
dx
∫

dk′ U(k′, x)V (0)
q (k′, x)f (0)q (x),

(58)

U(k′, x) :=
NCF
2π

∫
dk

πεk
2

∫ 1

wcut

dw
w

[
1 + (1− w)2 + εw2]

×CFw
2k2 + CA(1− w)q · (q + wk′)

q2(q + wk′)2
. (59)

The computation of the U integral can be done following
the calculation of [16]. We repeat here the main steps. Let
us consider separately the two terms involving different
colour constants.

The integrand of the CF term of U is regular – actually
vanishes – for w → 0 at fixed k, so that the lower bound

wcut can be set equal to zero, introducing a negligible error
of order E2

3/s. Changing the transverse integration vari-
able k → q = k − k′ yields

UCF
� NC2

F

2π

∫ 1

0
dw w

[
1 + (1− w)2 + εw2]

×
∫

dq

πε

1
q2(q + wk′)2

. (60)

Until now, we have not mentioned any upper limit of
the transverse momentum integrations. We know that the
transverse momentum squared of the outgoing particles
are kinematically limited to some value of the order of s.
For our purposes, however, these upper limits are not im-
portant, because the transverse momentum integrals con-
verge in the ultraviolet region k → ∞, and extending the
upper limit of integration to infinity causes negligible er-
rors of order 1/s:∫ ∞

|q|∼√
s

dq

q4
∝
∫ ∞

s

dt
t2

=
1
s
. (61)

The transverse integral in (60) can then be easily per-
formed, ∫

dq

πε

1
q2(q + wk′)2

=
w2ε−2

k′2

(
k′2

µ2

)ε
Γ 2(ε)
Γ (2ε)

=
w2ε−2

k′2

(
k′2

µ2

)ε
2
[
1
ε

− π2

6
ε+O(ε2)

]
. (62)

The ε pole reflects the two collinear singularities at q = 0
and q + wk′ = 0 which correspond to b ‖ 3 and 2 ‖ 3,
respectively. At this point also the w-integration can be
easily performed. Because of the pre-factor w2ε−2 in (62),
the w-integration turns out to be divergent2 at w = 0.
This is just the soft singularity expected for p3 → 0. The
final result for UCF

is

UCF
=
CF
π
h
(0)
b (k′)

(
k′2

µ2

)ε [ 1
ε2

− 3
2ε

+ 4− π2

6

]
(63)

up to terms O(ε). For the impatient reader we note that
the whole UCF

cancels out when added to the virtual cor-
rections of Sect. 3.

The CA term of U requires special care, because it
contributes to the high energy leading log s piece of the
cross section. In Sect. 2.3 (22) we have presented the lead-
ing partonic differential cross section, which is nothing but
the partonic cross section (52) with (53) evaluated in the

2 The reader could object that the w = 0 singularity is an
artifact of having set wcut = 0 which corresponds to having
neglected an infinite contribution. However this procedure is
consistent in that the logic of this calculation is first to perform
the Regge limit (5) at ε �= 0 and only as a last step, after
cancellation of the divergencies, to perform the physical ε → 0
limit
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z → 0 limit (the central region). The same consideration
holds also here after the replacements (55). In particular
we identify the leading term of UCA

with

ULL
CA

=
NCACF

π

∫
dk

πεk
2

1
(k − k′)2

∫ 1

wcut

dw
ϑ(w,k,k′)

w

= 2π
∫

dk h
(0)
b (k)K(0,real)(k,k′)

×
∫ 1

wcut

dw
ϑ(w,k,k′)

w
, (64)

where K(0,real) is defined in (26). The function ϑ in the
above equation signals that the functional form of the in-
tegrand, accurate in the central region, has to break down
somewhere in the fragmentation region of quark b. Ac-
cording to the analysis of [23], the emission probability in
the splitting q → q′g is dynamically suppressed when the
emission angle of the gluon g is smaller than that of the
quark q′. In the present case, by comparing the ratios of
transverse to longitudinal components of particles 2 and
3, one expects the active phase space to be

E3

w
>

E2

1− w
⇐⇒ w <

E3

E2 + E3
. (65)

This has led the author of [16] to propose a leading term
of the form of (64) with ϑ(w,k,k′) := Θ(E3−wE2), which
matches (65) in the low-w region. With this choice,

ULL
CA

=
∫

dk h
(0)
b (k)K(0,real)(k,k′) log

√
xs

r(k,k′)
(66)

r(k,k′) = max(E2, E3) .

The remaining part of UCA
, i.e., UCA

− ULL
CA

, is constant
in s, and hence it is a NLL contributions; it is given by an
integral that, at fixed transverse momenta, is now finite
for wcut → 0. The result is

UNLL
CA

=
CA
π
h
(0)
b (k′)

(
k′2

µ2

)ε [
− 3
4ε

− π2

3
− 1

4

]
. (67)

The ε-pole stems from the transverse k-integration in the
neighbourhood of the singularity at k = 0.

The complete contribution of the “upper half region”
to the jet cross section can be conveniently presented if
combined with the virtual correction contribution of (44)
coming from the b impact factor correction Π̃b:

dσ
dJ

(y′
3<0)

+
dσ
dJ

(virt)
∣∣∣∣
Π̃b

= αs

∫
dx
∫

dk dk′ h(0)b (k)K(0,real)(k,k′)

× log
√
xs

max(E2, E3)
V (0)

q (k′, x)f (0)q (x) (68a)

+αs
∫

dx
∫

dk h
(1)
b (k)V (0)

q (k, x)f (0)q (x) , (68b)

In addition to a LL part, this formula reproduces the first
constant term of (35) (of course, only the term a = q),

namely the full one-loop impact factor correction of the
upper quark b:

h
(1)
b (k) =

CA
π

[(
−3
4
+
ε

4

)
1
ε
+

67
36

− π2

12
− 5Nf

18CA

]
×
(

k2

µ2

)ε
− b0 log

k2

µ2
. (69)

The quark impact factor has been calculated also in
[18], but there a different definition has been used. In or-
der to explain the relation between the two approaches,
some general remarks on the definition of impact factors
and energy scales might be in place. It is known that pro-
cesses involving coloured incoming particles are affected
by collinear singularities that lead to divergent cross sec-
tions. These singularities depend on the type of the incom-
ing particles, and it is therefore natural to associate them
with the process dependent impact factors. In our paper,
we follow [16,17], and we require the partonic impact fac-
tors to include singularities of collinear origin only. Such a
prescription may sound somewhat academic, because par-
tonic impact factors have no phenomenological applica-
tion and interpretation. However, in view of the jet vertex
which in the present paper represents our main goal, this
requirement is very natural.

Namely, at the lower end of the diagram, where the
coupling of the reggeized gluon to the incoming parton is
described by the jet vertex (more precisely, by the con-
volution Va ⊗ fa which we may call “jet impact factor”)
it is mandatory that its singularity structure matches the
one required by collinear factorization. Only in this case
fa can be identified as the usual parton density with one-
loop corrections (36), and only with this prescription the
remaining jet vertex Va is finite. As we shall see in the
next section, the jet distribution function helps to disen-
tangle this structure from the leading log part in a very
natural way, but the basic requirement is the matching of
the singularity structure with the collinear singularities.

In our approach we therefore insist on the collinear
properties of any impact factor. It is apparent from (69)
that h(1)b has a simple pole which is the one expected from
the b ‖ 2 collinear divergence – more precisely, the residue
of the pole reproduces the non singular part of the γgq
anomalous dimension. This is a consequence of our choice
for the LL subtraction needed to define the impact factor:
the angular ordering prescription takes proper account of
the whole neighbourhood of the b ‖ 2 collinear region, and
it avoids spurious singularities which potentially could be
present due to the (k − k′)2 denominator in (64). Nev-
ertheless, even with this requirement on the singularity
structure there is still some freedom in the definition of
the impact factor – essentially a factorization-scheme ar-
bitrariness – which corresponds to changes in its finite (in
ε) part. It is possible to show that the “good” collinear
properties of the impact factors are preserved, provided
the angular ordering prescription in the leading term is
fulfilled in the soft (small w,E3) region, while the details
of the subtraction at finite w or E3 affect only the finite
part.
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Returning to the evaluation of leading term, one might
think of two different strategies. First, we could consider
the whole ULL

CA
term as part of the kernel: this amounts

to perform the w-integral in (64) and to obtain the LL
kernel, multiplied by a logarithm of the energy. This cor-
responds to the first line of (66), where the energy scale
r (the denominator in the argument of the log), being a
function of k and k′, is determined by the particular LL
subtraction, i.e., by ϑ. If we adopt, for instance, the an-
gular ordering prescription in the whole range of w, i.e.,
ϑ(w,k,k′) : = Θ(E3 − w(E2 + E3)), the energy scale is
r = E2 + E3. In this case the new impact factor differs
from (69) only by a finite piece.

Alternatively, we might chose a particular energy scale,
say r̄, and then decompose ULL

CA
into a leading term con-

taining the log(
√
xs/r̄), plus a next-to-leading term con-

taining the log(r/r̄). The latter term can be expressed, at
relative order O(αs), as a multiplicative operator factor:

(h(0) + αsh(1))(1 + αsH
(r̄)
L )

(
1 + αsK(0) log

√
xs

r̄

)
(70)

H
(r̄)
L (k,k′) := K(0)(k,k′) log

r̄(k,k′)
r(k,k′)

. (71)

As long as we have chosen the energy scale r̄ in such a way
that in the limit k � k′ (k − k′ � k) it reduces to r̄ →
|k′| � |k−k′| = E3 (r̄ → |k| = E2), the factor (1+αsHL)
can be safely embodied in the impact factor term without
spoiling its collinear properties, i.e., it changes h(1) only
by a finite (in ε) amount.

On the other side, for Regge-motivated scales of the
energy like the one proposed in [7], the inclusion of the
HL term in the impact factors3 leads to a different infrared
behaviour, giving rise even to double poles. In this case,
in our opinion, it will be useful to separate the factor (1+
αsHL) from the impact factor and eventually to include
it into the definition of the NLO BFKL kernel.

4.4 Real corrections to the jet vertex

In this section we consider the real corrections in the
“lower half region” y′

3 > 0, i.e., the corrections to the
jet vertex. The starting formula is derived from (12), us-
ing (48) for the jet distribution and (52) and (53) for the
partonic cross section:

dσ
dJ

(y′
3>0)

=
αs
2π

NCF
∫

dk dk′ h(0)b (k)

×
∫ 1

zcut

dz
Pgq(z, ε)
πε

1
k′2q2(q − zk)2

× [CF z2k′2 + CA(1− z)q · (q − zk)
]

×
∫ 1

0
dx S(3)

J

(
k′, q, xz;x

)
f (0)q (x) , (72)

3 In [18], one can find the expression for the impact factor
at the Regge-scale r̄ = |k′| = E2 and the equivalence with our
expression (h(0) + αsh

(1))(1 + αsH
(r̄)
L ) is proven
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Fig. 8. Structure of the Feynman diagrams contributing to
the qb → qbg process in NLL approximation when the outgo-
ing gluon is emitted with positive rapidity y′

3 > 0. The blob
represents all possible qg∗ → qg QCD sub-diagrams

where we have used (15) in order to write explicitly the
kinematic dependence of the q impact factor.

In this phase space region, the quark-quark {b, 2} sub-
system is kinematically well separated from the quark-
quark-gluon {q, 1, 3} system, and they are connected only
via the exchange of a gluon of momentum k (Fig. 8).
Therefore, at fixed k, the dynamics of the two subsys-
tems are independent of each other. Actually, because of
the k-factorization [24], only the transverse momentum k
and the longitudinal component w need to be fixed in or-
der to separate the two systems, because the {b, 2} system
does not contain final state emissions at large sub-energies,
and its dependence on the longitudinal component w̄ is
very weak and can be neglected. Moreover, the value of
w is constrained by the mass-shell condition of quark 2,
so that only k is the relevant variable between the two
subsystems. We therefore expect a “pure” k-factorization,
where the {b, 2} coupling with the exchanged gluon is de-
scribed simply by the h(0)b (k) impact factor. In order to
find the expression for the {q, 1, 3} system and its coupling
to the gluon (and to the hadron H), we fix the transverse
momentum k, remove the b impact factor and study the
remaining part of the jet cross section (72).

First of all, it is important to understand the structure
of the singularities in (72). The integrand contains three
singular points in the k′-integration, namely the zeroes of
the denominator k′ = 0, q = 0, and q − zk = 0. These
points correspond to the collinear configurations q ‖ 1,
q ‖ 3 and 1 ‖ 3, respectively. Moreover, there is a potential
soft singularity hidden in the 1/z pole of the “splitting
function” Pgq. The numerators in the square brackets of
(72) soften some of those singularities, but this happens
differently for the CF and the CA parts. Therefore, we
consider these two terms separately.

4.4.1 CF term

The CF term, owing to the k′2 factor in the numerator,
has no q ‖ 1 collinear singularity. Due to the factor z2
in the numerator, the z-integrand is no longer singular at
z = 0 and, along the same line of arguments as given in
Sect. 4.3, we can shift the value of zcut → 0. Dropping the
(y′

3 > 0) label, the CF part of (72) is given by

dσ
dJ

CF = αs
NC2

F

2π

∫
dk h

(0)
b (k)

∫ 1

0
dx f (0)q (x)
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×
∫ 1

0
dz z2Pgq(z, ε)

∫
dk′

πε

1
q2(q − zk)2

×S(3)
J (k′, q, xz;x) . (73)

It is convenient to rescale the gluon transverse momentum
by setting q =: zl, and to use l as integration variable by
substituting k′ = k − zl, so that q − zk = z(l − k). Next
we perform a simple fraction decomposition in order to
separate the initial (i) state (q ‖ 3 ⇐⇒ l = 0) and final
(f) state (1 ‖ 3 ⇐⇒ l − k = 0) collinear singularities:

1
l2(l − k)2

=
1

l2 + (l − k)2

[
1
l2

+
1

(l − k)2

]
. (74)

Beginning with the final state (f) collinear singular-
ity, in terms of the new variables the CF contribution to
the jet cross section can be rewritten in the form

dσ
dJ

f
CF := αs

∫ 1

0

dz
z1−2ε

∫
dl

πε(l − k)2
I(z, l)

=
dσ
dJ

f,soft
CF +

dσ
dJ

f,coll
CF +

dσ
dJ

f,finite
CF , (75)

which is particularly suitable for the analytic extraction
of the divergencies: the RHS contains three pieces, 1) the
soft divergence, 2) a pure collinear divergence, and 3) a
finite part. The explicit expression of the integrand I in
(75) is

I(z, l) :=
CF
2π
zPgq(z, ε)

∫
dk h

(0)
b (k)

NCF
l2 + (l − k)2

×
∫ 1

0
dxS(3)

J (k − zl, zl, xz;x)f (0)q (x) . (76)

The soft term in (75) is defined by evaluating the in-
tegrand in the soft limit z → 0. In this limit, the jet dis-
tribution can be simplified by means of (49a), and leads
to the constraint k2 = E2

J . One obtains

dσ
dJ

f,soft
CF := αs

∫ 1

0

dz
z1−2ε

∫
dl

πε(l − k)2
I(0, l)

= αs
CF
π

∫
dk h

(0)
b (k)

∫ 1

0

dz
z1−2ε

×
∫

dl

πε(l − k)2
NCF

l2 + (l − k)2

×
∫ 1

0
dxS(2)

J (k;x)f (0)q (x)

= αs
CF
π

[
1
2ε2

− π2

12
+O(ε)

](
E2
J

µ2

)ε ∫
dk

×
∫ 1

0
dx h(0)b (k)V (0)

q (k, x)f (0)q (x) , (77)

where, in the final result, we have collected some factors
in such a way that they reproduce the LO jet vertex (19).
It can easily be seen that we have recovered the LO struc-
ture of the factorization formula. The additional divergent

factor exhibits single as well as double poles, because our
definition of the soft part includes also the region where
collinear and soft singularities merge.

The pure collinear singularity can be isolated by eval-
uating the integrand (76) in the collinear limit l = k, after
having subtracted the soft term (l = k, z = 0). The result-
ing expression is clearly regular in the soft limit (z → 0)
and therefore contains a simple collinear pole. An UV cut-
off Λ is introduced since the residue at the collinear limit
is no more integrable in the UV region. Thanks to (49b)
the jet distribution simplifies to S(2)

J :

dσ
dJ

f,coll
CF := αs

∫ 1

0

dz
z1−2ε

∫
dl

πε(l − k)2
[I(z,k)− I(0,k)]

×Θ(Λ2 − (l − k)2)

= αs
CF
2π

∫
dk h

(0)
b (k)

NCF
k2

×
∫ 1

0

dz
z1−2ε [zPgq(z, ε)− 2]

×
∫

dl

πε(l − k)2
Θ(Λ2 − (l − k)2)

×
∫ 1

0
dxS(2)

J (k;x)f (0)q (x)

= αs
CF
π

[
− 3
4ε

(
Λ2

µ2

)ε
+ 2 +O(ε)

] ∫ 1

0
dx

×
∫

dk h
(0)
b (k)V (0)

q (k, x)f (0)q (x) . (78)

The remaining part is regular in the ε → 0 limit and
defines the finite term:

dσ
dJ

f,finite
CF := αs

∫ 1

0

dz
z

∫
dl

π(l − k)2
[
I(z, l)− I(0, l)

−(I(z,k)− I(0,k)
)
Θ(Λ2 − (l − k)2)

]
(79)

This result (with explicit expressions for I(z,k) etc.) will
be used in our final formula.

Next we consider the term (i) with the initial state
collinear singularity. We can write, in the same way as
before,

dσ
dJ

i
CF := αs

∫ 1

0

dz
z1−2ε

∫
dl

πεl
2 I(z, l)

=
dσ
dJ

i,soft
CF +

dσ
dJ

i,coll
CF +

dσ
dJ

i,finite
CF , (80)

where I is given by (76). One sees immediately that the
soft contribution is exactly the same as for the (f) term:

dσ
dJ

i,soft
CF =

dσ
dJ

f,soft
CF . (81)

As to the collinear piece, we note that in the collinear limit
l = 0 the jet distribution reduces (by applying (49d)) to
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S(2)
J , and one gets4

dσ
dJ

i,coll
CF := αs

∫ 1

0

dz
z1−2ε

∫
dl

πεl
2 [I(z,0)− I(0,0)]

×Θ(Λ2 − l2)

= αs
CF
2π

∫
dk h

(0)
b (k)

NCF
k2

∫
dl

πεl
2Θ(Λ

2 − l2)

×
∫ 1

0
dx f (0)q (x)

∫ 1

0

dz
z1−2ε (82)

×
[
zPgq(z, ε)S(2)

J (k;x(1− z))− 2S(2)
J (k;x)

]
.

With the change of variable z → 1 − z, and performing
the l integration, we obtain

dσ
dJ

i,coll
CF = αs

CF
2πε

(
Λ2

µ2

)ε ∫
dk h

(0)
b (k)h(0)q (k)

×
∫ 1

0
dx f (0)q (x)

∫ 1

0
dz

1
[(1− z)1−2ε]+

× [1 + z2 + ε(1− z)2
]S(2)

J (k;xz) , (83)

where the standard ()+ regularization has been used. To
separate singular from finite pieces one has to perform
an ε-expansion inside the z-integral. In order to cast the
collinear singularity into the standard form, we introduce
the full 4-dimensional Altarelli-Parisi q → q splitting func-
tion5

Pqq(z) = CF

(
1 + z2

1− z

)
+

= CF

[
1 + z2

(1− z)+
+

3
2
δ(1− z)

]
. (84)

We then can write

dσ
dJ

i,coll
CF = αs

∫
dk h

(0)
b (k)

∫ 1

0
dx f (0)q (x) (85)

×
{
CF
π

(
− 3
4ε

)(
Λ2

µ2

)ε
V (0)

q (k, x)

+
∫ 1

0
dz V (0)

q (k, xz)
[
1
ε

(
Λ2

µ2

)ε
Pqq(z)
2π

+
CF
π

1− z

2
+
CF
π

(
log(1− z)
1− z

)
+
(1 + z2)

]}
.

In the last expression the first term is again the LO jet
cross section, multiplied by a singular factor; the second
term contains the proper quark corrections to the quark

4 The UV cutoff Λ for the initial state collinear singularity is
in principle independent of the one adopted in the final state
collinear term of (78). We use the same cutoff for all collinear
subtractions in view of its identification with the factorization
scale Λ = µF

5 The appearance of a q → q splitting function is simply due
to the relation Pgq(1 − z) = Pqq(z) valid for z < 1

distribution function, while the remaining pieces are finite
in the ε → 0 limit.

The last contribution in the CF part is regular in 4
dimensions and defines another finite term

dσ
dJ

i,finite
CF := αs

∫ 1

0

dz
z

∫
dl

πl2

[
I(z, l)− I(0, l)

−(I(z,0)− I(0,0)
)
Θ(Λ2 − l2)

]
(86)

and will be used in our final result.

4.4.2 CA term

The term proportional to CA in (72) reads

dσ
dJ

CA = αs
CA
2π

NCF
∫

dk h
(0)
b (k)

∫ 1

0
dx f (0)q (x)

×
∫ 1

zcut

dz (1− z)
Pgq(z, ε)
πε

×
∫

dk′

k′2
q · (q − zk)
q2(q − zk)2

S(3)
J (k′, q, xz;x)

=
dσ
dJ

coll
CA +

dσ
dJ

LL
CA +

dσ
dJ

const
CA . (87)

It shows a q ‖ 1 collinear singularity corresponding to the
k′ = 0 pole. Because of the numerator, the k′-integration
is not really singular at q = 0 nor at q − zk = 0, except
for z → 0. In fact, in the high energy limit (5), q fixed and
z � 1 correspond to gluon 3 being in the central region,
where we have

CA
2π

(1− z)
Pgq(z, ε)
πε

q · (q − zk)
q2(q − zk)2

z→0−→ CA
π

1
πεq2

1
z
= K(0,real)(k,k′)

1
z
. (88)

This is exactly the expression entering the differential par-
tonic cross section (22) in the central region that provides
the LL contribution. In other words: (87) contains the
q ‖ 1 collinear singularity in the whole z-range; for finite
values of z neither the q ‖ 3 nor the 1 ‖ 3 collinear singu-
larities are really present. However, in the (gluon) central
region z � 1 their “collinear denominators” degenerate,
providing the soft singular real part of the leading kernel
∼ 1/q2.

The jet distribution functions will become essential in
disentangling the collinear singularities, the soft singular-
ities, and the leading log s pieces. The basic mechanism
can be understood as follows:

– When the outgoing quark 1 is in the collinear region
of the incoming q, i.e., y1 → ∞, quark 1 cannot enter
the jet; only gluon 3 can thus be the jet, y3 is fixed and
no logarithm of the energy can arise due to the lack
of evolution in the gluon rapidity. No other singular
configuration is found for the quark when J = {3}.
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– In the composite jet configuration, i.e., J = {1, 3}, the
gluon rapidity is bounded within a small range of val-
ues, and also in this case no log s can arise. There could
be a singularity for vanishing gluon 3 momentum: even
if the 1 ‖ 3 collinear singularity is absent, we have seen
that, at very low z, a soft singular integrand arises.
However, the divergence is prevented by the jet cone
boundary, which causes a shrinkage of the domain of
integration ∼ z2 for z → 0 and thus compensates the
growth of the integrand.

– The one-quark jet configuration J = {1} allows the
gluon to span the whole phase space, apart, of course,
from the jet region itself. The LL term arises from
gluon configurations in the central region. But also
here, like in the negative rapidity region discussed in
Sect. 4.3, it is crucial to understand to what extent the
differential cross section provides a leading contribu-
tion. It turns out that the coherence of QCD radiation
suppresses the emission probability for gluon 3 rapid-
ity y3 being larger than the rapidity y1 of the outgoing
quark 1, and an angular ordering prescription similar
to that of (65) holds. This will provide the final form
of the leading term, i.e., the appropriate scale of the
energy and, as a consequence, a finite and definite ex-
pression for the one-loop jet vertex correction.

As a first step we isolate, in (87), the initial state q ‖ 1
collinear singular contribution and define, like in the CF -
term analysis, the collinear term by setting k′ = 0 (except
in the 1/k′2 pole), and by introducing an UV cutoff:

dσ
dJ

coll
CA := αs

CA
2π

NCF
∫

dk h
(0)
b (k)

∫ 1

0
dx f (0)q (x)

×
∫ 1

zcut

dz Pgq(z, ε)
∫

dk′

πεk
′2
Θ(Λ2 − k′2)

k2

×S(3)
J (0,k, xz;x) . (89)

In this expression the jet distribution, because of (49c), re-
duces to S(2)

J (k;xz). By including the NCA constant fac-
tors and the 1/k2 pole, we reconstruct the gluon-initiated
LO jet vertex (see (15) and (19)). Note also that

CFPgq(z, ε) = CF
1 + (1− z)2

z
+ CF εz

= Pgq(z) + CF εz , (90)

where Pgq(z) is the 4-dimensional q → g splitting function.
It will be used to define the quark correction to the gluon
distribution function, and the lower bound zcut can be
set equal to zero (up to an error of the order t/s). The
transverse integral is easily performed, and we obtain

dσ
dJ

coll
CA = αs

∫ 1

0
dx
∫

dk h
(0)
b (k)

∫ 1

0
dz V (0)

g (k, xz)f (0)q (x)

×
[
1
ε

(
Λ2

µ2

)ε
Pgq(z)
2π

+
CF
π

z

2

]
+O(ε) . (91)

By subtracting the collinear term (89) from the to-
tal CA term (87), we obtain an expression, that is finite

in the ε → 0 limit, and whose value increases logarith-
mically with s because of the dz/z integration with lower
bound zcut ∼ s−1/2. As already mentioned, it is extremely
important to understand the extension of the phase space
contributing to the cross section at NLL accuracy, i.e., by
including also the constant terms. That is actually cru-
cial in the small-z region where the integrand develops a
soft singularity which, if not properly absorbed in the real
part of the kernel, could give rise to spurious divergencies
spoiling the whole procedure.

It is instructive to review how the mechanism of sup-
pression of the differential cross section sets in when the
gluon is emitted at an angle smaller than that of the
quark. At fixed quark momentum p1, i.e., at fixed trans-
verse momentum k′ �= 0 and longitudinal momentum p31 �
(1 − z)x

√
s/2 – one can imagine J = {1} fixed by the jet

condition –, and at fixed gluon transverse energy E3 = |q|
and longitudinal momentum p33 � xz

√
s/2, we perform an

azimuthal average of the subtracted CA differential cross
section with respect to the angle φ3 of the gluon. The
collinear subtraction actually does not contribute, because
it refers to configuration with k′ = 0. If in this averaging
procedure we neglect the variation of h(0)b (k), it is suffi-
cient to calculate the azimuthal average of the factor〈

(1− z)q · (q − zk)
q2(q − zk)2

〉
φ3

=
1
q2
Θ(E3 − z(E1 + E3)). (92)

This relation is exact and clearly shows that, outside the
angular ordered region

E3

z
>

E1

1− z
⇐⇒ θ3 > θ1 ⇐⇒ y3 < y1 , (93)

there is no contribution to the cross section. In practice,
by taking into account the variation of h(0)b (k) during the
averaging procedure, we have to replace “no contribution”
by “suppression”. Note however that, in the limit q → 0
(which includes the soft region), the variation of k′ goes to
zero as well, so that (93) is really an accurate statement
in the “dangerous” part of the phase space. Moreover,
(92) shows that the 1/q2 kinematic dependence of the LL
kernel governs the differential cross section up to the very
end of the angular boundary. Therefore, we define the LL
contribution in the “lower half region” y′

3 > 0 by

dσ
dJ

LL
CA := αs

∫
dk h

(0)
b (k)

∫
dk′ CA

π

1
πεq2

h(0)q (k′)

×
∫ 1

zcut

dz
z
Θ(E3 − z(E1 + E3))

×
∫ 1

0
dx S(2)

J (k′, x)f (0)q (x)

=
∫ 1

0
dx
∫

dk

∫
dk′ h(0)b (k)K(0,real)(k,k′)

× log
√
xs

EJ + E3
V (0)

q (k′, x)f (0)q (x) , (94)

where we have imposed the J = {1} jet condition.
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Table 1. Schematics of the decomposition of real and virtual one-loop corrections to qb scattering and
references of the corresponding equations

virtual real

ω(1) Π̃q Π̃b y′
3 < 0 y′

3 > 0

︸ ︷︷ ︸ CF CA

↙ ↘ f i

LL soft,coll h
(1)
b LL soft coll finite soft coll finite coll LL const

(96a) (96b) (68b) (68a) (77) (78) (79) (81) (85) (86) (91) (94) (95)

The remaining part of the CA term is finite in 4 di-
mensions and constant in energy, so that we can set ε = 0
and zcut = 0 to define the constant part

dσ
dJ

const
CA :=

[
dσ
dJ

CA − dσ
dJ

coll
CA − dσ

dJ

LL
CA

]
zcut = 0

ε = 0

. (95)

5 The NLO jet vertex:
Sum of real and virtual corrections

Having completed the calculation of both the virtual and
real corrections in the whole phase space, we are going to
collect all partial results and to show that the complete
one-loop jet cross section can naturally be fitted to the
form of (35). Table 1 summarizes the decomposition of
the one-loop jet cross section and gives the references of
the various contributions.

In Sect. 3 we have presented the virtual contributions
to the jet cross section which, after renormalization of the
coupling, assume the form of (44). We have already taken
into account the contribution coming from the Π̃b impact
factor correction in Sect. 4.3 by combining it with the “up-
per half region” real contribution in (68). The remaining
virtual terms can be conveniently rewritten in the form

dσ
dJ

(virt)
∣∣∣∣
ω(1)

+
dσ
dJ

(virt)
∣∣∣∣
Π̃q

= αs

∫
dx
∫

dk dk′ h(0)b (k)K(0,virt)(k,k′)

× log
xs

s0(k,k′)
V (0)

q (k′, x)f (0)q (x) (96a)

+αs

[(
E2
J

µ2

)ε(
− 1
ε2

+
3
2ε

+
π2

6
− 4
)
CF
π

+
(
85
36

+
π2

4

)
CA
π

− 5
18
Nf
π

− b0 log
E2
J

µ2

]
×
∫

dx
∫

dk h
(0)
b (k)V (0)

q (k, x)f (0)q (x) , (96b)

where the virtual kernel K(0,virt) has been defined in (29)
and the coefficient Π̃q is given in (45). The energy scale
s0 in (96a) is constrained to satisfy s0(k,k) = k2 = E2

J ,

because the delta function inside the virtual kernel sets
k = k′, and the delta function in the LO jet vertex sets
k′2 = E2

J . The general form of the energy scale for k′ �= k
will be fixed in a moment by the real LL contribution.

We first join the LL real contributions (68a) and (94):
they show the same structure and differ only in the loga-
rithmic term. The sum of the two logarithms yields

log
√
xs

max(E2, E3)
+ log

√
xs

EJ + E3

= log
xs

(EJ + E3)max(E2, E3)
. (97)

The denominator in the argument of the logarithm defines
the energy scale s0. However, as we have already pointed
out, there is some freedom in choosing the LL subtraction
and, correspondingly, the denominators in the log s. We
can obtain a more symmetric expression by defining the
LL term in the “upper half region” as suggested at the end
of Sect. 4.3: by replacing the scale max(E2, E3) by E2+E3.
This amounts to using the same prescription for defining
the LL contribution in the “upper half region” y′

3 < 0 and
in the “lower half region” y′

3 < 0. With this choice, the
full LL contribution to the jet cross section, including the
virtual correction (96a), is

dσ
dJ

LL
=
∫

dx
∫

dk dk′ h(0)b (k)K(0)(k,k′)

× log
xs

s0(k,k′)
V (0)

q (k′, x)f (0)q (x) (98)

s0(k,k′) := (|k′|+ |q|)(|k|+ |q|)
= (EJ + E3)(E2 + E3) . (99)

It is straightforward to check that

s0(k,k′) → k2 = E2
2 for k2 � k′2 , (100a)

s0(k,k′) → k′2 = E2
J for k2 � k′2 , (100b)

s0(k,k) = k2 = E2
J for k = k′ . (100c)

These constraints are consequences of the QCD coherence
effects [23]. We identify (98) with the first term of (35).

Let us stress that the energy scale in (99) – and in
general all the scales satisfying (100) – arises naturally
when one requires impact factors and PDFs to have stan-
dard collinear properties and the remaining non-leading-
log term (95) to be finite in both the physical ε → 0 and
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high-energy s → ∞ limits. Choosing a scale of the en-
ergy outside the class defined by (100) while preserving
the above properties, requires the introduction of addi-
tional NLL operators (see (71)) which has to be added as
multiplicative corrections to the Green’s function. If, for
instance, we adopt s0 = |k||k′|, then the Green’s function
in (33b) has to be replaced by

G(xs,k,k′) = (1+ αsHL)
[
1+ αsK(0) log

xs

|k||k′|
]

×(1+ αsHR) (101)

HL(k,k′) = −K(0)(k,k′) log
|k|+ |q|

|k| ,

HR(k,k′) = HL(k′,k) . (102)

The second term of (35) has already been obtained in
(68b). We remark again that, with the choice of the energy
scale (99), the one-loop impact factor correction h(1)b is no
longer given by (69) but differs by a finite part. However,
its actual expression is irrelevant for the jet vertex.

We now consider the sum of all ε-divergent contribu-
tions that have not been included in the h(1)b impact factor
term (68b). They can be found in (96b,77,78,81,85,91) and
add up to

dσ
dJ

singular
(103)

=
αs
2π

1
ε

(
Λ2

µ2

)ε ∫
dx
∫

dk h
(0)
b (k)V (0)

q (k, x)

×[Pqq ⊗ f (0)q

]
(x) +

αs
2π

1
ε

(
Λ2

µ2

)ε
×
∫

dx
∫

dk h
(0)
b (k)V (0)

g (k, x)
[
Pgq ⊗ f (0)q

]
(x)

+αs

[(
3
2
log

E2
J

Λ2 − 2
)
CF
π

+
(
85
36

+
π2

4

)
CA
π

− 5
18
Nf
π

−b0 log E
2
J

µ2

] ∫
dx
∫

dk h
(0)
b (k)V (0)

q (k, x)f (0)q (x)

+αs
∫

dx
∫

dk h
(0)
b (k)

∫
dz V (0)

q (k, xz)f (0)q (x)

×
{
CF
π

[
1− z

2
+
(
log(1− z)
1− z

)
+
(1 + z2)

]
+
CA
π

z

2

}
.

All double poles have cancelled out. Single poles only ap-
pear in connection with the splitting functions: they are
shown in the first three lines of (103), and they contribute
to the third term of (35) which contains the PDF one-loop
corrections. Note however that, since the present analysis
has been restricted to the case of incoming quarks, we
have obtained only the quark-initiated corrections to the
quark and gluon PDF, i.e., only the term c = q in the
sum of (36). The gluon-initiated corrections require an in-
coming gluon out of hadron H and will be presented in a
forthcoming paper [13]. It is also clear that the cutoff Λ
can be identified with the factorization scale µF .

The last two terms of (103) are regular at ε = 0 and
can be combined with the finite parts (79), (86) and (95).

The resulting expression can be cast into the form

dσ
dJ

finite
= αs

∫
dx
∫

dk h
(0)
b (k)V (1)

q (k, x)f (0)q (x) ,

(104)
which defines the NLO correction to the quark-initiated
jet vertex

V (1)
q (k, x)

:=
[(
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2
log
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)
CF
π

+
(
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36

+
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)
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18
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q (k, x) +
∫
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×
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}

+
CA
π

∫
dk′

π

∫
dz

[
1
2
Pqq(z)

(
(1− z)

q · (q − k)
q2(q − k)2

h(0)q (k′)

×S(3)
J (k′, q, xz;x) +− 1

k′2Θ(Λ
2 − k′2)V (0)

q (k, xz)

)

− 1
zq2

Θ(|q| − z(|q|+ |k′|))V (0)
q (k′, x)

]

+
CF
2π

∫
dz

1
(1− z)+

(1 + z2)
∫

dl

πl2

[
NCF

l2 + (l − k)2

×
(
S(3)
J (zk + (1− z)l, (1− z)(k − l), x(1− z);x)

+S(3)
J (k − (1− z)l, (1− z)l, x(1− z);x)

)
−Θ(Λ2 − l2)

(
V (0)

q (k, xz) + V (0)
q (k, x)

)]
. (105)

It clearly depends on the jet definition and on three scales:
the energy scale s0 (via the subtraction of the LL term
∝ 1/z), the factorization scale Λ = µF and the renormal-
ization scale µ.

Equations (104) and (105) provide the fourth and last
term of (35) and represent the main result of our study.

6 Conclusive remarks

In this paper we have investigated a particular class of
jet final states in the high energy region. Both the theo-
retical and phenomenological motivation comes from the
interest in the Regge limit of QCD: the jet production pro-
cesses - forward jets in ep collisions and Mueller-Navelet
jets in hadron-hadron collisions - have been designed to in-
vestigate BFKL dynamics at present and future colliders.
Whereas the BFKL Pomeron is known at LO and NLO,
a complete NLO analysis and comparison with data has
not been possible, since neither the photon impact factor
nor the jet vertex have been calculated in NLO. On the
other hand, there is no doubt that at moderately large en-
ergies, NLO corrections to the asymptotic LO behaviour
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are important for a reliable description of the processes
under consideration. It is the purpose of this paper (and
a forthcoming one) to calculate the jet vertex in NLO: in
this first part we have studied the quark-initiated jet ver-
tex, whereas the gluonic counterpart will be presented in
a subsequent paper.

In order to extract the NLO jet vertex we have calcu-
lated the cross section of the process quark b+ quark a →
quark b+X+ jet at order α3s: apart from the NLO correc-
tions to the impact factor of quark b and the contribution
to gluon production in the central region, this process pro-
vides the NLO corrections to the quark-initiated vertex
quark a → jet. As an important theoretical result we have
verified that the factorization form (33a) holds: this proof
follows from the fact that we have been able to separate,
in the sum of virtual and real corrections, the collinear sin-
gularities which go into the renormalization of the parton
density of the incoming quark a, and the gluon emission
in the central region which is part of the LO calculation.

Another theoretical issue of interest is the dependence
upon the scales. In leading order, results of the BFKL
calculations and the jet vertex are insensitive to both the
energy scale s0 and to the renormalization scale µ. It is
only at the NLO level that the dependence on these scales
is being determined.

The central result of our calculation is the expression
(105) for the NLO jet vertex. Using the factorization prop-
erty (33a), we can use our result also for the upper incom-
ing quark b, i.e., for the ‘symmetric’ Mueller-Navelet jet
production process q+q → jet+X+jet . As the final step,
we will have to allow for the production of an arbitrary
number of gluons between the jets which is described by
the NLO BFKL Pomeron. This step will be presented in
the companion paper containing the NLO gluon-initiated
jet vertex.

With our expression for the jet vertex we have pro-
vided a finite integral that can be computed numerically,
e.g. via Monte-Carlo integration. Such a numerical study
requires to specify the jet algorithm described by the func-
tion S(3)

J : so far we have been rather general, but clearly
the numerical results will depend on the choice of the jet
algorithm.
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